Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hong-Ping Xiao,* Mao-Lin Hu and Xin-Hua Li

Department of Chemistry and Material Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study T = 273 KMean σ (C–C) = 0.004 Å R factor = 0.032 wR factor = 0.091 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[bis(1,10-phenanthroline)chlorocopper(II)] benzene-1,2,4,5-tetracarboxylate(2-) dihydrate

In the title compound, $[CuCl(C_{12}H_8N_2)_2]_2(C_{10}H_4O_8)\cdot 2H_2O$, the Cu^{II} cation has a five-coordinate environment made up of one chloride anion and four N atoms of two 1,10-phenanthroline ligands. Hydrogen bonds between the benzene-1,2,4,5tetracarboxylate(2-) anion and water molecules produce a linear hydrogen-bonded chain. The anion lies on a special position of $\overline{1}$ site symmetry.

Received 2 December 2003 Accepted 5 December 2003 Online 12 December 2003

Comment

The synthesis of new coordination polymers is of current interest in the field of crystal engineering and supramolecular chemistry owing to the crystal-packing motifs that give rise to potential properties as functional materials (Kitagawa & Kondo, 1998; Mori et al., 2000; Song et al., 2003). Multicarboxylate building blocks such as benzene-1,4-dicarboxylic acid (H₂BDC) and benzene-1,2,4,5-tetracarboxylatic acid (H₄TCB) can produce the desired networks in metal-organic polymers (Gutschke et al., 2001; Lo et al., 2000; Xiao & Zhu, 2003; Yang et al., 2003). However, complexes made from H₄TCB, phen and Cu^{II} building blocks are rather limited (Hu et al., 2003; Shi et al., 2001), and the title complex, [CuCl-(phen)₂]₂(H₂TCB)·2H₂O, (I), represents an example.

The coordination geometry of the Cu atom is best described as a distorted trigonal bipyramid made up of one chloride anion and four N atoms of two phen molecules (Fig. 1). The H_2TCB^{2-} anion is free and does not coordinate to the Cu atom, whereas in $[Cu(phen)(H_2TCB)]_n$, the H_2TCB^{2-} anion displays a μ_2 -bridging mode (Hu et al., 2003). In the $[CuCl(phen)_2]^+$ cation, two phen molecules are almost perpendicular to each other.

There are two types of hydrogen bonds: one intramolecular $(O3-H32\cdots O2)$ and two intermolecular $[O5-H30\cdots O1^{i}]$ and O5-H31···O1ⁱⁱ; symmetry codes: (i) x - 1, y, z; (ii) 1 - x, 1 - y, 1 - z]. The free water molecules and H₂TCB²⁻ anions form a hydrogen-bonded chain. The distance between adjacent chains is 11.336 (8) Å, the b axis length. The $[CuCl(phen)_2]^+$ cations occupy the space between the chains and there are $\pi - \pi$ stacking interactions of the phen rings,

Figure 1

Twice the asymmetric unit of (I), with atom numbering, showing displacement ellipsoids at the 50% probability level.

between two neighboring cations, at a distance of approximately 3.66 Å.

Experimental

A solution (10 ml) of dimethylformamide containing $CuCl_2 \cdot 2H_2O$ (0.043 g, 0.25 mmol) and H_4TCB (0.13 g, 0.5 mmol) was added slowly to a solution (10 ml) of dimethylformamide containing 1,10phenanthroline (0.10 g, 0.5 mmol). The mixture was left to stand at room temperature for about two weeks to afford green prisms.

Crystal data

-	
$[CuCl(C_{12}H_8N_2)_2]_2(C_{10}H_4O_8)\cdot 2H_2O$	Z = 1
$M_r = 1206.96$	$D_x = 1.607 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 10.1324 (7) Å	Cell parameters from 426
b = 11.3356 (8) Å	reflections
c = 12.2000 (9) Å	$\theta = 2.3 - 21.4^{\circ}$
$\alpha = 104.0410 (10)^{\circ}$	$\mu = 1.03 \text{ mm}^{-1}$
$\beta = 95.2080 (10)^{\circ}$	T = 273 (2) K
$\gamma = 110.6850 \ (10)^{\circ}$	Prism, green
V = 1247.48 (15) Å ³	$0.34 \times 0.28 \times 0.13 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-	4388 independent reflections
detector diffractometer	3992 reflections with $I > 2\sigma(I)$
φ and φ scans	$R_{int} = 0.014$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.1^{\circ}$
(SADABS: Bruker, 2000)	$h = -11 \rightarrow 12$
$T_{\rm min} = 0.714, T_{\rm max} = 0.874$	$k = -13 \rightarrow 8$
6633 measured reflections	$l = -12 \rightarrow 14$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0509P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 0.4259P]

where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.0094 (12)

 $(\Delta/\sigma)_{\rm max} = 0.005$ $\Delta \rho_{\rm max} = 0.46 \text{ e Å}$

 $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

S = 1.07
4388 reflections
374 parameters
H atoms treated by a mixture of independent and constrained

 $wR(F^2) = 0.091$

refinement

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	1.9949 (18)	Cu1-N4	2.0047 (18)
Cu1-N2	2.1569 (18)	Cu1-Cl1	2.2763 (6)
Cu1-N3	2.1071 (17)		
N1-Cu1-N2	80.38 (7)	N2-Cu1-N3	93.90 (7)
N1-Cu1-N3	94.34 (7)	N2-Cu1-Cl1	121.04 (5)
N1-Cu1-N4	174.67 (7)	N3-Cu1-N4	80.70 (7)
N1-Cu1-Cl1	92.15 (5)	N3-Cu1-Cl1	145.05 (5)
N2-Cu1-N4	97.93 (7)	N4-Cu1-Cl1	93.04 (5)

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H31···O1 ⁱⁱ	0.855 (10)	2.025 (14)	2.864 (3)	167 (3)
$O5-H30\cdots O1^{i}$	0.849 (10)	2.313 (17)	3.096 (3)	154 (3)
O3−H32···O2	0.851 (10)	1.593 (18)	2.404 (3)	158 (4)

Symmetry codes: (i) x - 1, y, z; (ii) 1 - x, 1 - y, 1 - z.

H atoms bonded to O were refined subject to the restraint O-H = 0.85 (2) Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å with $U_{iso} = 1.2U_{eq}$ (C).

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No. 202137).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Gutschke, S. O. H., Price, D. J., Powell, A. K. & Wood, P. T. (2001). Eur. J. Inorg. Chem. pp. 2739–2741.

Hu, M. L., Xiao, H. P., Wang, S. & Li, X. H. (2003). Acta Cryst. C59, m454– m455.

Kitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739–1753.

Lo, Š. M. F., Cui, S. S. Y., Shek, L. Y., Iin, Z. Y., Zhang, X. X., Wen, G. H. & Williams, L. D. (2000). J. Am. Chem. Soc. 122, 6293–6294.

- Mori, W. & Takamizawa, S. (2000). J. Solid State Chem. 152, 120-129.
- Shi, Q., Cao, R., Sun, D. F., Hong, M. C. & Liang, Y. C. (2001). *Polyhedron*, **20**, 3287–3293.
- Song, R., Kim, K. M. & Sohn, Y. S. (2003). Inorg. Chem. 42, 821-826.
- Xiao, H. P. & Zhu, L. G. (2003). Chin. J. Inorg. Chem. 19, 1179–1184.
- Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L. S. & Ng, S. W. (2003). Acta Cryst. E**59**, m921–m923.